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GAUSSIAN PROBABILITY MEASURE DEFINED BY A GENERALIZED RELATIVE DENSITY 

ABSTRACT 

A generalized gaussian relative probability density is introduced 

in an infinite dimensional linear space. Although it is zero with 

probability one, it achieves to describe an actual probability distri­

bution in another apace by the behavior of its maxima on linear 

varieties. The calculus of random functions in terms of variational 

problems, which suggested this introduction, is to be the subject of 

subsequent reports. 



An elementary property of gaussian probability densities in several 

variables is seen to motivate what must surely be the simplest, most 

direct and intuitive approach possible to gaussian probability distri­

butions in infinite dimensional linear spaces. A gaussian distribution 

is described by means of a generalized ,....c 1 c+; "tr.c. 
.L'\,...1.-t...I.V..LV'-

the obvious formal generalization of the gaussian density in several 

variables. It cannot, of course, be the probability per unit volume 

since there is no volume. Rathe'r the distribution is described in 

terms of the behavior of the maxima of this generalized density on 

linear varieties. The elementary property which motivates the treatment 

turns out to be just what is needed to fulfill the hypothesis of a .. .. 
fundamental theorem of Kolmogorov LlJ which assures the existence, in 

any of certain larger spaces, of probability measures so described. 

The equivalence of these measures is then inferred without difficulty 

and perhaps contributes a bit to an understanding of the gaussian 

distribution. 

The densities will be studied further and applications will be 

made in subsequent reports. 

At this late date no introduction to gaussian distributions is 

apt to be totally new. Although the present treatment seems rather 

novel (to the author at leasthit differs from many existing dis­

cussions principally in that it avoids the use of a preferred repre­

sentation of the elements of the linear space. The maximum principle 

on which it is based has been used repeatedly by Feynman [1, 2] and 
probably others in the evaluation of individual functional integrals. 

It is pleasant to note that the space in which the density is defined 

need not be 

l. N In the space R of N-tuplets u: ~' u2, . . . , ~ of real 

nu111bers, a gaussian probability distribution is defined by a 

probability density 

5 



Cf'(u) 1 k exp (- 2 J(u)) (1) 

where J(u} is a positive definite quadratic polynomial, a translation 

of a positive definite quadratic form K(u): 

for some u 
0 

N 
E R . 

J(u) K(u - u ) 
0 

In (1), k is a normalizing constant which will 

(2} 

henceforth be omitted. The resulting relative gaussian probability 

density will, for brevity, be described as a density. The values 

v: v,' 
.J.. 

, v ... , M~ N, of any set of independent linear combi­
J.Y1 

nations of the u's, 

N 

[ 1, 2, . . . M, 

j=l 

(3) 

are random variables whose simultaneous distribution is described by 

a density ~(v) which may be found by integrating out the excess 

variables in (2). However, it may also be obtained simply as the 
maximum of qp(u) taken subject to the condition that the linear 

functions t(u} take the specified values: 

Theorem 1 If u is a set of gaussian random variables 

having a density Q)(u}, the density of the values v of 

independent linear combinations (3) is 

.lJ --\ max I ~A I--\ n I __ \ --\ 
'f\ v J \'f' \ U.J .ti\,UJ VJ 

I 1 I -1 ' 
_, 

" ' ' exp ~- - min ~J~U) J~U) V))• 2 

6 

(4) 



· .. 

~nis result becomes apparent when a linear transformation is 

made to independent variables of which the first M are linear 

combinations of £1(u), ... , £M(u). 

So far as the author knows, this simple property of normal 

distributions has not before been expressly stated. Here it will 

serve first to motivate the definition of a generalized density in 

an infinite space, and second, to provide a principal cog in the 

mechanism by which the generalized density is seen to describe a 

probability distribution in a different space, a certain second 

conjugate space. 

2. Let S be a real linear space in which there is defined an 

inner product (u, v), u, v € s,which is positive definite, i.e., 

(u, u} H~l'2 > 0' if u I 0 . 

Such a space S may be completed to form the unique minimal hilbert 

space S ~ s. A positive definite quadratic 

is a functional which can be written in terms of such an inner 

product as 

J(u) 

where £(u) is a linear functional bounded with respect to lui . 
The definition of the functionals J(u) and £(u) may be extended 

continuously to S in a unique way. The representation theorem 
- . assures the existence of an element u € S such that 

0 

l(u) 

for all u E 8. Then, using the linearity of the inner product, 

7 
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(6) 

(7) 



J(u) ftu uol 
2 const. + (8) 

A functional 

It\( u) 1 
exp - - .T( n )_ u € ~L 

T"-' 2 -,-,:1 -~ (9) 

where J(u) is a positive definite quadratic functional will be 

called a generalized relative gaussian probability density, or 

briefly, a density. It will be the aim of the following paragraphs 

to justify this terminology. 

t 
Let S be the normed conjugate space of S, consisting of all 

bounded linear functionals defined on S. To each v'(u) € s'there 

corresponds V € S SUCh that v'(u) = (v, u) for all U E 8 (or S). 
This corr-espondence, in which both norm and linear structure are 

invariant, makes it frequently unnecessary to distinguish between 

a hilbert space and its conjugate. Here, however, the reader may 

find it helpful to emphasize the distinction. Further, let ~:{~} 
be the algebraic conjugate space of s', consisting of the linear 

functionals, ~ (u' ), not necessarily bounded, defined on s'. 
For these functionals the following extensions of earlier notation 

will be used: 

~(v') v' (~) (v, ~). (10) 

" The space S will be the space in which is to be defined the proba-

bility measure described by (9). To each element v' of 8 1 will 

then be associated a random variable (10). 

Any finite set u1' , ~· , . . . . ~· of linearly independent 

elements of 8 1 has an N-dimensional probability distribution 

described by a density ~(w1 , w
2

, .... 1 wN) in the ordinary 

8 



sense that if E is any measurable set of RN, the probability that 
the N-tuplet ~: ~'(u), u2

1 (u), . , ~'(u) lies in E is 

jt(w) dw1 

E 

I,,\ 
\.L.LJ 

The density is given in analogy with (4) by the conditioned supremum 

v(w) '"' r I I ( w .. J w_J 
"1. ' ~ ' 

. . . 
' ~ 

.l- ~· 

= sup (<D( u): u E s, u. 1 ( u) w .• 1 = 1,2, 1\T\ - f - . l. ' , ''1' .. , 

= exp- ~ inf (J(u): u e S, u1'(u) = w1 , 1 = 1,2, .•• , N).(12) 

The supremum may, of course, be replaced by maximum if S is replaced 
by S. In order to verify that t(w), so defined is a gaussian density, 
it must be shown the exponent which occurs in (12) is a definite 
quadratic polynomial~ There are 'tr r- Q .f , 1'\ 11.T 

y i ~ u' ..L -- .L ' c. ' • • • 11' 

by means of which it is possible to express the functionals u ' as 
1 

inner products: 

Any element u e Scan be expressed, with real a,, 
.L 

in the form 

N 
u + L + r, 

1-j; 

where 

1\T 
• • ' .u. 

9 

(13) 

0 1 ~TI 
ll 

(14) 

(15) 



Then the conditions on the infimum in (12) can be written 

N 
~ 

L (16) 
i=l 

j=l,2, N. 

The statement that the v17 = , vN are linearly independent is 
equivalent to the non-vanishing of the determinant of the quantities 
(v

1
, vi), i,J = 1, ... , N; and it is seen from (16) that speci-

fyfng (vj, u), j l, ... 7 Nj is equivalent to specifyir~ 
al, . . . , aN. Since 

-rl \ • a.2 ~ .. .. ? 
v~UJ I u - uol- Lai vi +lrl-

N .. .. ~ ~ 

(vi, vj) (17) L ai aj + Jrl._ 
i,j=l 

it is clear that the infimum of J(u) with the a 1s specified is 
obtained by setting r = 0, and that the value so obtained is positive 
and is a quadratic form in a 

1' 
• • • ,. wl\r· 

.u 

... , aN, or, equivalently, in 

Finally, in order to justify the term generalized density, it 
must be -shown that there exists a probability measure of which the 
array of margir£1 densities obtained -from (12) is a proper description. 

/. 

This results from a straightforward application of the fundamental 
theorem of Kolmogorov r1, Ch. III1: ... . .. 

M 
Let M be any set. Let R~·~ be the space of real functions xl-l 

defined before all~ EM. If for every finite subset ~l' ~2 , ~··; ~N 

of M there is given a probability distribution in the space RN of 



the values of x , x , ... , x , and if these finite dimensional 
~l ~2 ~N 

distribut.ions are compatible, then there exists a countably additive 
M probability measure in R defined, over the field of those subsets 

of RM countably generated by half spaces (sets defined for some 

~ € M and real k, by x (k) and having the given distributions as 
~ 

marginal distributions, i.e., as distributions 

considered as random variables on RM. 

of sets x , 
IJ.l 

. . . , 

In applying this theorem to the present situation the index set M 
may be taken as a Hamel basis Z of S', that is, a finitely linearly 
independent subset of S' such that every element of S' can be expressed 
in a unique way as a finite linear combination of elements of z~ The 

compatibility condition, that the given lower dimensional distributions 
are obtained in every case by integrating out the excess variables from 
the given higher dimensional distributions, is here immediately seen to 
be satisfied by virtue of Theorem 1 and the fact t~t, for N

1 
( N, 

max 

li€8 

sup (<p (u):u1 ' (u) 

UES 

k., i 
l 

l, 2, ... , N) 

(18) 

The conclusion may now be drawn that the generalized density describes 
a probability measure on the space of functi0nals on z. But since Z 

is a Hamel basis of sr, the linear functionals on 8 1 are one-to-one 

linear images of the functionals on z. ~ne generalized density may 
thus equally well be said to describe a probability measure on ~. It 
is also clear that this measure is independent of the choice of the 

Hwuel basis z. T-nis completes the proof of 

11 



Theorem 2: A generalized gaussian density (9) defined 

on a linear space S: { u} describes by means of the 

marginal densities (12) a unique, countably additive 
A 

probability measure on the space S of linear functionals 

defined on the normed conjugate space S' of S, con-

sisting of those linear functionals on S which are 

bounded with respect to the norm provided by the given 

density. This measure is defined over the borel field 

" of sets of S generated countably by half spaces, the 

sets {~ E ~ ~( u 1 )<. k} u' ES 1 , k real. 

3. Either as a consequence of Theorem 2, or more simply by 

repeating the argument with minor amendments the following corollary 

is obtained. 

A CorollarY: Let V1 be a subset of s• and V the space 

of linear functior~ls defined on V1 • The generalized 

density (9) describes a unique, countably additive 

probability measure in ~ over the borel field of sets 

of V generated by half spaces{~ E ~: ~(v') <. k}~ 
v 1 E V ' , k real . 

~ 
If V1 is complete in 8 1 , the measure defined in Vis an adequate 

A 
representation of the measure defined in S in the sense described in 

the following theorem. For the statement, there is needed the 

definition that two sets are equivalent if their differences are of 

meaau=e zero. 

~neorem 3: ir the set Vi is complete in 8 1 , the measures 
A /\ 

defined on 8 and V are isomorphic in the sense that there 

is a one-to-one correspondence between classes of equivalent 
sets in the two spaces in which measure, inclusion and 

translation by elements 9f S are preserved. 

l2 



A A 
Proof: There is a projection of S into V in which each element of 

~'a linear functional on s•, is carried into its restriction to V'. 

Tb each measurable set EV of ~ let correspond the set ES of ~ con­

sisting of all elements which are projected into elements of EV. 
A 

A sequence of operations on the half spaces of V which defines E,r 
v 

defines similarly when applied to the corresponding half spaces of 
1\ 
S, a set of E8 of the same measure. There remains only the question 

whether every measurable set of S is included in this correspondence, 

and it will suffice to show that every half space is included, or, 

in other words, to show that to each bounded linear functional 
A 

u'ES there is an equivalent random variable defined on V. Since 

v' is complete in 8 1
, there is a sequence vl'' v2'' in v' such 

thatgvi= - u'U tends to zero. An irmnediate consequence of {12) 
is that the norm of any bounded linear functional on S is the 

standard deviation of the random variable it defines. The sequence 

{v1 '}must ther=f~re be regular in probability inAV and defines (see 

-e.g., Halmos [1] Sec. 22, Theorem E, p. 93) in V a random variable 

equivalent to u' (ibid., Theorem c). This completes the proof. 

Perhaps it should be emphasized that this isomorphy is not a 

m~pping of elements. If the space is infinite and if v' is a small 

(compared to a Hamel basis) set then it will not be possible to express 
A 

any significant portion of the elements of S as linear images of 

elements of~- If S is a separable space, then, as Friedrichs and 

Shapiro (1, 2] have shown, linear mappings of elements can be produced 

which work with probability one and provide a realization of the 

isomorphy of the measure spaces related by a change of coordinates. 

13 
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